NASA Contractor Report 181742

The CSM Testbed Matrix Processors
Internal Logic and Dataflow Descriptions

{NASA~CR- 181702) THE CSH 'IEC'IBEE HATRIX

FECCESSCES INTEEMNZL LCGIC ANL LATAFLOW

LESCRIPILCNS (Lcckheed Missiles and Space

(c.) 91 C5CL 20K
G3/39

Marc E. Regelbrugge and Mary A. Wright

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS1-18444

December 1988

NASN

National Acronautic:. and
Space: Administration:

Langley Research Center
Hampton. Virginia 23665 5225

N89- 14474

Unclas
0185C76

1.0

2.0

3.0

4.0

The Computational Structural Mechanics Testbed Matrix Processors
Internal Logic and Dataflow Descriptions

Introduction

1.1 Overview

1.2 Definitions and Notations

1.3 Testbed Sparse Matrix Data Structure

System Matrix Processors
2.1 TOPO

22 K

2.3 INV

2.4 SSOL

Utility Processors
3.1 AUS

References

Introduction

1.0 Introduction

This report constitutes the final report for subtask 1 of Task 5 of NASA Contract NAS1-
18444, Computational Structural Mechanics (CSM) Research. This report contains a
detailed description of the “coded” workings of selected CSM Testbed matrix processors
(i.e., TOPO, K, INV, SSOL) and of the arithmetic utility processor AUS. These proces-
sors and the current sparse matrix data structures are studied and documented. Items
examined include: details of the data structures, interdependence of data structures, data-
blocking logic in the data structures, processor data flow and architecture, and processor
algorithmic logic flow.

Revised 1988/11/7 CSM Testbed Matrix Processors 1.0-1

Introduction

THIS PAGE LEFT BLANK INTENTIONALLY.

1.0-2

CSM Testbed Matrix Processors Revised 1988/11/7

Introduction Overview

1.1 Overview

This document describes details of the coded workings of the CSM Testbed matrix
processors TOPO, K, INV, SSOL and the utility processor AUS. The purpose of this

description is twofold:

1) To provide a clear description of the internal logic and data flows and
of the user and database interface requirements of these processors so
as to enable the straightforward and accurate modification of these
processors to enhance the analytical capabilities of the Testbed.

2) To lend insight into the necessary functionality and key architectural
features of these processors in order to guide future development
of matrix-algebra oriented software along functionally rational and
utility-oriented lines.

The centerpiece of the present description is the set of logic flowcharts developed for key
subroutines of each of the system matrix processors TOPO, K, INV, SSOL and AUS. These
charts, along with commented FORTRAN source code also produced under this CSM activity,
allow a knowledgeable code developer to deduce the logic of the documented routine and to
locate quickly particular sections of code either to be modified or to serve as examples for
further explanation. The reader should make a special note of the symbiotic relationship
between the logic flowchartsand the commented FORTRAN source code, i.e., both need to be
reviewed together in any serious study of these modules’ internal workings. This is because
the details of FORTRAN programming practices are frequently best understood upon careful
study of the code itself. Many of these details are simply too intricate and specialized to be
well described by flowcharts or technical English. The programming described here is not
for beginners. On the other hand, the logic lowcharts provide a more general view of the
processor modules from which the reader may deduce modules’ operations in the context of
the architecture of the entire processor. The logic flowcharts allow one to examine program
logic flow on a level above that which is possible in study of a one-page program listing.

Each matrix processor described in Chapter 2 is also fully documented as to processor
and/or subprocessor name, function, user inputs (RESET and other commands), input
and output database datasets, and internal core allocation practices. In addition, the data
storage structure of the Testbed sparse matrix is documented in §1.3. The interested reader
is referred to the references listed in §4.0 for additional information. We wish to note that
the activities undertaken to provide the present description were greatly simplified by the
prior effort expended in the production of the referenced documents (§4.0).

Revised 1988/11/7 CSM Testbed Matrix Processors 1.1-1

Overview

Introduction

THIS PAGE LEFT BLANK INTENTIONALLY.

1.1-2

CSM Testbed Matrix Processors

Revised 1988/11/7

Introduction Definitions and Notation

1.2 Definitions and Notation

The following key is helpful in the interpretation of the logic flowcharts.

lowercase - general information

UPPERCASE user commands {e.g., RESET, INLIB) or generic
entities (e.g., KMAP buffer)

BOLDFACE - FORTRAN-identifiable quantities (e.g., variable
names, subroutine names, statement labels, etc.)
SLANTED - database entities. Input datasets appear above

the dataflow lines whereas output datasets ap-
pear below the dataflow lines
generic wild-card match

* (asterisk)

In the accompanying text, FORTRAN-identifiable quantities appear in typewriter
font. Like many FORTRAN compilers, no distinction is expressly drawn between subroutine,
function, and variable names. Common block names are written with leading and trailing
slashes, like /THIS/. In keeping with FORTRAN-IV conventions, and since the vast majority
of the source code described herein appears in uppercase, FORTRAN entities appear only in
uppercase.

Revised 1988/11/7 CSM Testbed Matrix Processors 1.2-1

Definitions and Notation

Introduction

THIS PAGE LEFT BLANK INTENTIONALLY.

1.2-2

CSM Testbed Matrix Processors

Revised 1988/11/7

Introduction Testbed Sparse Matrix Data Structure

1.3 Testbed Sparse Matrix Data Structure

This section describes the data storage structures of the Testbed sparse matrix.
Throughout this section, an example model depicted in figure 1 will be referenced. This
example is a simple finite-element model comprising five beam elements, two triangular
plate elements and one quadrilateral plate element. For purposes of illustration, all six
nodes are assumed to have six active degrees-of-freedom (d.o.f.), providing a total of 36
d.of in the entire model. The nodal d.o.f. are numbered in the conventional sense; one
through six being associated with translational motions in the z, y, and z directions and
rotations about the z, y, and z axes, respectively. Note that the d.o.f. associated with all
translations at node 1 and with y and z translations at node 4 are suppressed by support
boundary conditions.

5 6 ‘¢
Example Problem Model:
6 nodes
X

6 d.o.f./node
1 4
2 3
Element Connected
type Nodes
1 beam 1, 2
2 beam 2, 3
3 Dbeam 3, 4
4 beam 2, 5
5 Dbeam 3, 6
6 plate 1, 2, 5
7 plate 3, 4, 6
8 p l at e 2 i 3 ? 6 ’ 5

Figure 1 Example Finite Element Model.

The Testbed sparse matrix data structure is a nodal-block oriented scheme for storing
the elements of the upper triangle of a sparse, symmetric system matrix. The Testbed
sparse matrix is stored in one of two forms depending on whether the matrix has been
factored. Figure 2 shows the logical structure of the unfactored Testbed sparse matrix
using the interrelationships of the nodal-block submatrices for the example problem. Note
that each box like

Revised 1988/11/7 CSM Testhed Matrix Processors 1.3-1

Testbed Sparse Matrix Data Structure Introduction

denotes a 8 by 6 nodal-block submatrix connected to the two nodes listed in parentheses
inside the box. In the example above, the block indicated contains the coupling contribu-
tions from nodes 1 and 2. In the example problem, elements 1 and 6 contribute to this
nodal-block submatrix (1,2). In the example matrix of figure 2, the only block whose
terms are present in the factored matrix but absent in the unfactored matrix is marked
with a large “x.”

- -

(1,1) (1,2) (1,5)

(2,2) (2,3)

(3,3) (3,4) (3,5) (3,6)

(4,4) (4,6)

(5,5) (5,6)
symmetric

(6,6)

Key:

Indicates 6 by 6 nodal-block submatrices. In
(1,35) | the case at left, the submatrix due to element
connectivity between nodes 1 and 5 is depicted.

Indicates nodal-block submatrix that is not present
in the model stiffness, but will fill in during
factoring.

Figure 2 Sparse Matrix Nodal-Block Structure.

Both factored and unfactored Testbed sparse matrices are stored in a blocked, parti-
tioned record scheme. Individual records are of constant length and contain both indexing
data and matrix value data. The indexing data are useful only as integer type, but are
stored physically in the unfactored matrix structure in the same datum precision as the

1.3-2 CSM Testbed Matrix Processors Revised 1988/11/7

Introduction Testbed Sparse Matrix Data Structure

terms of the matrix itself. In the factored matrix structure, however, the indexing data
are stored as integer type regardless of the datum precision of the matrix values. The
record partitions differ in detail between the factored and unfactored matrix structures,
owing primarily to the incorporation of constraint (d.o.f. suppression) information into
the factored matrix structure.

The record partitioning scheme and record contents for unfactored stiffness matrix of
the figure 1 example problem are presented in figures 3(a) and 3(b). To make the substance
of figure 3(b) more illustrative, a record length (LREC) of 384 words has been chosen.
The fundamental unit of information in the record partitioning scheme is the nodal-block
subrecord, which comprises nodal index information and all nodal-block submatrices that
contribute to the rows assigned to the diagonal-block node in the upper triangle of the
system matrix. The first node listed in the nodal index is referred to as the diagonal-block
node since its nodal block appears on the diagonal of the system matrix. The nodal index
information contains the number of nodal-block submatrices present in the subrecord (for
the current diagonal-block node) and the node numbers associated with the columns of
these nodal-block submatrices. The size of each nodal-block submatrix is the square of the
number of nodal d.o.f. not constrained on the START card in the TAB Testbed modeling
processor.

Note that the records are partitioned so that complete nodal subrecords are contained
within one record, i.e., the matrix information associated with a nodal-block row of the
matrix is not allowed to span record boundaries. Thus, the record size is used only as a
data manager parameter, and transmits no specific information about the matrix itself, or
how the record partitions are to be interpreted. All interpretive information is encountered
sequentially as the record is processed from the first word through the LREC*® word.

The record partitioning scheme and record contents for the factored stiffness matrix
of the figure 1 example problem are presented in figures 4(a) and 4(b). For purposes of
illustration, a record length (LRA) of 384 words was chosen for the detail of the record
contents in figure 4(b), and only the first record is shown. The subscripts of the D! and
L terms in figure 4(b) refer to d.o.f. numbers, assigned sequentially in groups of six to
each node.

As in the unfactored matrix structure, nodal subrecords in the factored matrix are
not allowed to span record boundaries. Unlike the unfactored matrix structure, constraint
data associated with nodal d.o.f. suppressions is included in the matrix data records. The
factored matrix rows corresponding to suppressed d.o.f. are not included in the data. A
map is provided at the beginning of the nodal subrecord to indicate the active d.o.f., as
an indexed subset (1,...,n) of the d.o.f. not constrained on the START card in TAB, for
the current diagonal node. An interesting observation is that the factored matrix data
cannot be decoded completely without additional information about the number of d.o.f.
per node in the finite element model, and which nodal d.o.f. are potentially active. In the
Testbed, this information is obtained from a modeling summary dataset JDF1.BTAB.1.8.

Revised 1988/11/7 CSM Testbed Matrix Processors 1.3-3

Testbed Sparse Matrix Data Structure Introduction

Data Records: n records of length LREC words.

1

3 b—

" ‘ m
f— LREC —>»]

Typical Record Structure:

LREC > ol

Y
~7

null fill

]

nodal index nodal-block submatrices

7

Subrecord Key Contents

Number of nodal-block rows in the upper
triangle of the system matrix contained

in this record.

header

)

nodal index % Number of nodes contributing to the
nodal-block submatrices in this row and
the numbers of these nodes.

nodal-block % 6 by 6 submatrices of matrix coefficients
submatrices in the rows of the upper triangle of the
matrix connected to the nodes listed in
the nodal index.

Figure 3(a) Record Partitioning Scheme for
Testbed Sparse Matrix.

1.3-4 CSM Testbed Matrix Processors Revised 1988/11/7

Introduction Testbed Sparse Matrix Data Structure
Record 1:
o 5 113,
31312 3] (1,1) (1, 2) (1,32 2 3} (2,2)
A7 R PR 77777777777 X PR
188, 337,
(2,3)] 4 3 45 6 (3,3) (3,4) (3,5) (3,6)
e msmenasa IS sene st st s e e s e e sa s sas s s nasaazsssEss:
384 Record contents:
3 nodal-block rows
1 fill .
aul . 9 nodal-block submatrices (36 wds. ea.)
337 words used (47 wds. null fill)
Record 2:
0, 4 76, 151,
312 4 6 (4,4) (4,6) |2 5 6| (5,5)] (5,6)
WSS SIS SIS e cessssssssussnnasvansss s A T IS EasssaasREsusRaSSEE D
189, 384,
1 6| (6,6) | null £ill
IS S R eeeasesssns:
Record contents:
3 nodal-block rows
S nodal-block submatrices (36 wds. ea.)
189 words used (195 wds. null fill)
Subrecord Key Contents
header = Number of nodal-block rows in the upper

nodal index

%

nodal-block
submatrices

triangle of the system
in this record.

matrix contained

Number of nodes contributing to the
nodal-block submatrices in this row and
the numbers of these nodes.

6 by 6 submatrices of matrix coefficients.

Figure 3(b) Sparse Matrix Record Contents for Example Problem.

Revised 1988/11/7

CSM Testbed Matrix Processors

1.3-5

Testbed Sparse Matrix Data Structure Introduction

Data Records: n records of length LRA words.

1

3 b

nl |]
le— LRA >

Typical Record Structure:

LRA >

IIISIIIIIINNINNSTTZ .ffffffffffff.
null fill

& nodal index

header

Subrecord Key Contents
header = Number of nodal-block subrecords in

this record.

pointers Physical (word) pointers to start of each
subrecord in this record.
nodal index 4 Number of active d.o.f. and d.o.f. indices
° for current node, number of nodal-
block row submatrices to follow and the
numbers of the nodes associated with
these row submatrices.
factored row @ Nodal-blocks of rows of terms in the
nodal-block upper triangle of the factored matrix for
submatrices each active d.o.f. of the current node.

Figure 4(a) Record Partitioning Scheme for
Testbed Factored Matrix.

1.3-6 CSM Testbed Matrix Processors Revised 1988/11/7

Introduction

Testbed Sparse Matrix Data Structure

4

12

5 76 158

1 3456 325 *** D(;,‘,‘, L(.,S) L(.,o-)

B 7S/ 7SS SIS SIS SISV IS S S99 7

et

* ok KK -1
Ly 412 L(425) Liz6 - Lo Disy Liss) . Lsiazy Lysas)
sssasssssanzsnsazssasanas: .1:{”'“”“"'mm:'“”“'“'mrzzz.mmmmu.&}mmmw,
75
a ok K Kk -1
. Ls.30) Disy Ly --- Lz Lisas) - - - Lisso
e eTmraaeonnantoseassssssassnssssssssssssssserssssssssssssssisassssssssssssisssisssasass:

-1 *
26123456 23|D7s Liggy Lppgy -+ Lizas)
A A A D e e s na s o S E S s s s a s s aaanasoastsstaass:

-1 * ok * x
Dgsy Lissy --- Lisss Doy Loy -+ Loss
1nnIHHIIHHHﬁ{HHHHIH;'r?Hh;ii:iﬂh‘ﬂihnuuﬂihuu“Fr’diﬂiiﬂﬁﬂﬂﬂﬂiﬁl

* *

xxxxxxxxxxxxxxxxxx

157

3612345¢644°5

7)
* ok ke k % DizazyLaay- -

. L(12.18)

S SINSEEICareIS SISO INSAEsENENIEASEASIAUARSNSRAREE!

7 F 2 e o o s

6

1
Dyi3.13) Lirsaey -

. L13.36)

1
Dyig.14) Liiats)y - -

. L(14,36)

*

Isosaessusant

L

11lxlleI!llxrlIlLll[lrlirxnlxl!llxI1(lIllIrl[lLLIILxII[XLerIJLrIIlLI1][!1!1["

1
Dyi5.15) Ly1s.i6) -

L I B

1
. L1536 Dyis.16) Le16.17) - - - L16.36)

Tt IIIIIlxllllllIrrrxljxxlllII1[1111111rxllxl[lllxxt[l[

Tt

xxxxxxxxxxxxxxxxxxxxx

it ttdepdetr

- Denotes an unused, subdiagonal entry.

Figure 4(b)

Record Contents for Example Problem’s
Testbed Factored Matrix.

Revised 1988/11/7

CSM Testbed Matrix Processors 1.3-7

Testbed Sparse Matrix Data Structure Introduction

As an aside, one should note that the rather elaborate record partitioning schemes
used for the Testbed matrices are byproducts of the architecture of the underlying data
management system (DAL). Three DAL features in particular are responsible for the
original Testbed design choices to place indexing and matrix values data side-by-side in
the data records and to break the matrix storage into fixed-length segments (i.e., records).
These are:

1) DAL is a singly indexed hierarchical data manager, so to group data
in logically related sets frequently requires the use of inhomogenous
data records within a single dataset.

2) DAL handles datasets containing fixed-length records only. Different
records in the same dataset cannot have different lengths.

3) DAL is sector (physical disk block) addressable at the finest granular-
ity. Thus, it is required that integral numbers of disk blocks be read
or written through DAL. For practical core memory limitations and
the most efficient use of disk space, the large matrices are blocked
into records that are sized to integral disk block sizes.

The pertinent observation to be made at this point is that the structure of matrix data is
influenced not only by the structure of the matrix itself (in terms of zero and nonzero coeffi-
cients), but also by the operational characteristics of auxiliary data management software.
Herein lies the most intimate connection between the algebraic and data descriptions of
the system matrix.

1.3-8 CSM Testbed Matrix Processors Revised 1988/11/7

System Matrix Processors

2.0 System Matrix Processors

The four processors described in this Chapter are associated with assembly, factorization
and solution of sparse-matrix format system matrix equations. These processors are:

e TOPO - Element Topology Analyzer. Processor TOPO analyzes element intercon-
nection topology and creates datasets which guide the assembly and the factorization
of system matrices.

e K - The System Stiffness Matrix Assembler. Processor K assembles unconstrained
system matrices in the standard sparse-matrix format. If the appropriate elemental
arrays have been formed, processor K may be used to assemble either the system
material stiffness or the system geometric stiffness matrix.

e INV - Sparse-Matrix Format Factoring Processor. Processor INV factors the as-
sembled sparse-matrix format system matrices.

e SSOL - Static Solution. Processor SSOL performs forward reduction and back sub-
stitution using the factored system matrix, to obtain the static displacements and
reactions due to applied loads. Loads are combined from both processor EQNF and
processor AUS.

Revised 1088/11/8 CSM Testbed Matrix Processors 2.0-1

System Matrix Processors

THIS PAGE LEFT BLANK INTENTIONALLY.

2.0-2

CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors TOPO

2.1 Processor TOPO

2.1.1 GENERAL DESCRIPTION

Processor TOPO performs topology analysis and constructs the maps used in the
assembly and factorization of Testbed sparse format system matrices.

The system topology maps, KMAP..nsubs.ksize and AMAP..ic2.isize are designed to
facilitate system matrix assembly (using processor K) and factorization (using processor
INV). TOPO handles much of the local memory management for subsequent executions
of K and INV and communicates this information using the blocked, map data structures.
As such, the maps are purely internal data, and are not normally for Testbed user perusal.

2.1.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions
as described in Reference 2.

2.1.2.1 Processor Resets

Argument Default Meaning

BLIB 1 Input library number

LRKMAP 896 Length of KMAP..nsubs.ksize records

LRAMAP 1792 Length of AMAP..ic2.isize records

LR7 896 Length of records in scratch library number 26

MAXSUB 1400 Max. number of submatrices used during any stage of
assembly or factoring

ILMAX 0 Max. nodal connectivity allowed. If not reset, it will be
calculated based on MAXSUB

LAPROX 0 Estimated number of elements. If not reset, it will be
calculated.

SA 0 Diagnostic print flag — print almost everything

PRTKMAP 0 KMAP..nsubs ksize print flag

PRTAMAP 0 AMAP..ic2.isize print flag

PRT7 0 Print scratch library number 26 records

HLIB 1 KMAP..nsubs.ksize destination library

ILIB 1 AMAP..ic2.isize destination library

2.1.3 SUBPROCESSORS AND COMMANDS

Not applicable.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.1-1

TOPO System Matrix Processors

2.1.4 PROCESSOR DATA INTERFACE

2.1.4.1 Processor Input Datasets

JSEQ.BTAB.2.17 (optional)
ELTS.NAME
DEF.xxxx.itype.nnod
xxxx.EFIL.itype.nnod
=~ xxxx is the element type name
— itype is the element type number
= nnod is the number of joints per element

2.1.4.2 Processor Output Datasets

o KMAP..nsubs.ksize
— nsubs is total number of nodal submatrices in the
K.SPAR.jdf2
- ksize is the minimum required size (in submatrix
units) of the assembly workspace (ksize less than
MAXSUB)
e AMAP..ic2.isize
- ic2 is a measure of the number of submatrix com-
putations needed to factor the matrix
- isize is the number of submatrices needed in core
during matrix factoring

2.1.4.3 Processor Scratch Libraries

* Two workspace libraries (default: L25 & L26)

2.1.5 PROCESSOR LOGIC FLOW

Figures 5 through 9 contain flowchart diagrams for the TOPO top-level subrou-
tine, TOPOEX, which directs TOPO computations, subroutine ELSORT which sorts ele-
ment connectivity data into scratch data structures, and subroutines KMAP and PRECON
which produce the system matrix map (KMAP..nsubs.ksize) and the factored matrix map
(AMAP..ic2.isize), respectively. Other supporting subroutines, ELCON and ELSUB serve to
manage working arrays and pointers for nodal connectivity mapping (CONROW, CONECT),
and allocation pointers and block availability arrays (BLOCK, AVAIL) for the submatrix-
block assembly operation. These arrays are volatile local memory and are used on a
demand basis. ELCON manages CONROW and CONECT. ELSUB manages BLOCK and AVAIL.

The first task undertaken in TOPO is to sort elements into groups associated with each
node in the problem. Elements are assigned to nodal groups if they reference the given node
and at least one higher-numbered node (in the sense of the elimination sequence). This
sorting is accomplished in ELSORT in two phases: a coarse sort and a fine sort. The coarse

2.1-2 CSM Testbed Matrix Processors Revised 1088/11/8

System Matrix Processors TOPO

sort stores certain element information into records in scratch file L25 (NU6) associated
with the lowest-referenced element node. These scratch records are processed in element
order, and are random with respect to nodal order. They are collected into nodal order in
the final sort and written to a blocked data structure on library L26 (NU7).

The only essential differences between KMAP..nsubs.ksize and AMAP..ic2.isize, once
the nodal connectivity has been determined, are that KMAP..nsubs. ksize holds some ele-
ment data and that the AMAP..ic2.isize must account for nodal blocks which fill-in during
factoring. The mapping logic in subroutines KMAP and PRECON is virtually identical with
the exception of the DO 1300 loop to account for fill-in blocks in PRECON.

(3]

[
[]

(2

Revised 1988/1?/8 CSM Testbed Matrix Processors

TOPO System Matrix Processors

call
INTRO

r

procass
RESET
commands

(TOPOLD)

[

Build
the matrix
maps

(TOPOEX)

RETURN

Figure 5 TOPO main program logic flowchart.

2.1- 4 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

TOPO

_______l DEF .xxxx.1type.

ORIGINAL PAGE IS
OF POOR QUALITY

Inftialize
&

construct
resequasncing

array bt TR G b BE Lk i i iR

ELTS.NAME
sxist 7

iR

NETOT, MAXNN
and LRECL.

read element def'n
and calculate

s

calculate
NETOT, MAXNN
rw-mur and LRECL using
assumed parametsrs

T

1
i

S70P

sat or update
cors allocation
parameters
LPJ, NBLOKS, JPB

i g i A S e A S B A g BB e i i

i

sort lements DEF .xxxx. 1type.hnod

according to xxxx.EFIffitxpa nnod
lowest-refaranced i
node (ELSORT) ,

has
element sort
failad thrics

g

was

element sort
succaessful

Figure 8 TOPOEX logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors

2.1-5

TOPO System Matrix Processors

ORIGINAL PAGE IS
T OF POOR QUALITY

loop over maps
DO 3088 I45=1,2
to construct
KMAP and AMAP.
I45=1 (KMAP)
145=2 (AMAP)

!

initialize
map datasest
AKNAP or AMAP

set or update
core allocation

parametars
ILMAX, MAXCON, MAXSUB
LT_. LR_
call mapper
routine i
ir(145 = 1) {7(145 = 2) i
ez
(::;1 ‘q?::? (:a‘r:n] ;:5?0" KMAP. .nsubs. ksilze
' AMAP. . jc2. isize

was
mapper
succassful NG
?

has
mapper failed

thrice
?

end 3888 loop

I

RETURN

Figure 6 Concluded.

2.1-8 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors TOPO

{initialize counters
and set up scratch
fils NUG

|

loop over all alement types
Do 3852 ITY = 1, NTYP2

DEF.xxxx.itype.nnod
access the slement dataset T T TR R

via call to DAL

e
fi

was
elament dataset

found
?

®o

g i et
e S i R b

iy
-

calculate parameters:
LTYPE elemant type
NNODES nodes/element
NELTS 1 elements of this type
LRECL length of DEF.* record glgbal
NR ¢ DEF.* records

|

loop over element definition records 3
DO 3851 IREC = 1, NR =

. x. 7t .nnod
read-in slement definition record g&hﬁygéﬂ;;g

(RIO)

I

loop over aelements in record
DO 3851 IEL = 1, NELS

l

load LDEF array

l

datarming lowsst node attached to
this element and move LDEF
+a this noce's element buffer in KAC

4

3852 36851
Toop loop

\~
N
|
[N
[
N

Figure 7 ELSORT logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.1-7

TOPO

System Matrix Processors

3852
Toop

N

3651
loop

is

elt. buffer block

ves

full
?

dump elt. buffer
block from KAC to
scratch file.

—1 end 3851 locp
ond 3852 loop

save record number
in ISECT array.
(0UTZ)

looptthrough alt.

more
than NBLOKS
alt. blocks

LAPROX too small!

print error message,
increment IFAIL

~—— l

RETURN

buffer slocks to clear
them ocut to scratch file

DO 3488 N = 1, NBLOKS

dump 8lt. buffer
block from KAC to
scratch file.
save record number
in ISECT array.
(outZ)

end 3488 logp

o

invert resaquencing
array in JSEQ

print coarse
sort statistics
i1f IPSA set.

]

laop over all aglament
buffer blocks
DO 4488 N = 1, NBLOKS

[

raad-in all dumped data for
this block (RRINZ)

|

calculate number of elements
and nodes in this block
(variables NELS and JPB)

JL

Figure 7 Continued.

more
than NBLOKS
elt. blocks

—

LAPROX tac small!
print error message,
increment IFAIL

l

RETURN
__-/
LB ot R ARG
N—

ORIGINAL PAGE IS
OF POOR QUALITY

2.1-8

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors TOPO

I - ISR
C’—n,..-ﬁ. e TAT iy

OF POLL QUALITY

T 7

sat lowest-referenced
node far each alement
to be relative to this
element-buffer block
(2288 loop)

loop over nodes in this block
DO 4868 J = 1, JPB

Yoop

accumulatzor size
insufficient |
print error message
and set fatlure

L7?NEXT overflow
gutput buffsr

flag IFAIL
increment number of nodes s
in this record and store l
the node number and number RETURN

of connected 2lements in
the output buffer KFINAL

|

end 4869 loop

I

loop over @lements to move
element data into KFINAL array
(4288 loocp)

l

writa~out records for
this bleck (OUTZ P
¢) ;ﬂ‘“ w128
land 4488 loop

re-invert resaguencing
array JSEQ

I

[;fint statistics

[

RETURN

Figure 7 Concluded.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.1-9

TOPO

System Matrix Processors

initialize

l

loop over all nodes

1588
Tooo

DO 1688 ISTAGE=1,J7

get next

sorted-alement me
bleck
if required

locate open slat in
nodal connectivity
array CONECT and
set access pointer
in CONROW.
(ELCON)

l

set workspace paintaer
to node diagonal
submatrix block in
BLOCKX . (ELSUB)

calculata KMAP
space req'd for
current node

e

is
LRKM
sufficient

increment
failurs flag
IFAIL

l RETURN

flush current
record (RIO) |
and set-up

a new record

can node
fit intc current
KMAP record

'aumwzcamé

AMAP. .nsubs . ksrize

Jé mGinAl PAGE 'S
%;%ijz Q!%,e“a.L!T‘(

Figure 8 KMAP logic flowchart.

2.1- 10

CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

TOPO

1688
loop

16488
loop

5688
loce

-1

update KMAP record
parameters and set
start of this node's
data in KMAP record.

|

§569
Tocp

sorted to current node

loop over alaments

DO 5688 JEL=1,LRNG

[

store connactivity for

this elsment and move

element data NODES,

LTYPE, NSE, ITYPE,
NSCT and ISCT

to KMAP record buffer

l

loop over connected nodes

DO 5888 N=1,NNODES

l

locats open slot in
nodal connectivity
array CONECT and
sgt access pointer
in CONROW.
(ELCON)

sat workspace pointer
to node diagonal
submatrix block in
BLOCK . (ELSUB)

[

and 5088 loop

l

double loop over
connected nodes
DO 5588 NCOL=1,NNODES
00 5588 NROW=1,NCOL

set workspace pointars

for alement off-diagonal

submatrix dlocks in
BLOCK. (ELSUB)

L

Figure 8 Continued.

SToP
g
in EXCONiT an

overflow occurs in
the submatrix map

Revised 1988/11/8

CSM Testbed Matrix Processors

2.1-11

TOPO

System Matrix Processors

1608

lcop

N

hY)
A
N\

55080
Tocp

5648
loop

I

move BLOCK data
to MAParsa in
KMAP buffer

1

end 5588 loop
T

end 5668 1o0p

I

move CONRNG
to KMAP buffar

|

re-order CONECT
and BLOCK arrays
to reflact JSEQ

]

move CONECT and
BLOCKarrays to
KMAP record buffer

is this
the last node
to be mappad

ves

flush this KMAP
record to file
via RIQ

increment
statistics
counters

I

release space

used for this

node in BLOCK
array

[

Figure 8

snd 1688 loop

RETURN

Concluded.

T R
nsubs . ksize

2.1-12

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors TOPO

initialize

[

loop over all nodes
DO 1608 ISTAGE=-1,JT7

get next

sortad-alement oo
block

if required

locate open slot in
nodal connectivity
array CONECT and
set access pointar
in CONROW.
(ELCON)

[

gsot workspaca pointar
to node diagonal
submatrix block in
BLOCK . (ELSUB)

calculate AMAP
space req'd for
current node

is g
LRAM increment %
sutficient failurs flag |
IFAIL 3
[
RETURN

can node
fit into current
AMAP record

flush current
reacord (RIOD) |z rms

aam i b s L | Al
and sat-up AMAP. . fc2.7srze
a new record

1688

100;:7(_L

Figure 9 PRECON logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.1-13

TOPO System Matrix Processors

N
A

—_
update AMAP record
parameters and set

start of this node's
data in AMAP racord

l

loop over alsmants
sorted to current node
DO 56088 JEL=1,LRNG

l

store connectivity far
this element

|

loop over connected ncdes
00 5888 N=1,NNODES

l

locate open slot in
nodal connectivity
array CONECT and
set access pointer
in CONROW.
(ELCON)
5608 [
loop

1688

Toop

sat workspace pointar
to nods diagona?l

submatrix black in
BLOCK . (ELSUB)

end 5888 loop

double loop ovar

— connscted nodes

DO 5588 NCOL=1,NNODES
DO 5588 NROW=-1,NCOL

J

set workspace pointars $to0
for alement off-diagonal v

submatrix blocks in
BLOCK. (ELSUB)

in EXCON{f an
over?low occurs in
Lgfhe submatrix map

1600
Toop

end 5508 loop

end 5888 loocp

Figure 9 Continued.

2.1- 14 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

TOPO

16806
locop

1600
1o0p

-

move CONRNG
to AMAP buffar

|
re-order CONECT
and BLOCK arrays
to reflect JSEQ

|
move CONECTand
firgt part of BLOCK
arrays to AMAP buffer

|

double loop over
connected nodes

00 1368 L-2,ILIMIT
DO 1388 N=L,ILIMIT

|

set workspacs pointers

for element off-diagonal
and f111-in submatrix
blocks {n BLOCK

(ELSUB)

l

transferBLOCK data
to AMAP buffer

|

end 1308 lcop

is this
the last node

S aifullg
0

in EXCONif an
overflow occurs in
the submatrix map

to be mapped

vt

flush this AMAP
record to file

20 O S PO O O 7 9

AMAP. . fc2.isize

1

via RIQ
incremsnt
7
statistics
countars

release space used for
this node in BLOCK array

I

end 1888 loop

Revised 1988/11/8

FRolek 7
RETURN Lata0ase
Figure 9 Concluded.
CSM Testbed Matrix Processors 2.1-15

TOPO System Matrix Processors

2.1.6 PROCESSOR DATA FLOW

Local data management in TOPO is separated into the performance of two functions;
the sorting of elements connected to a given node, and the generation of the “MFILEs,”
or matrix maps.

The element data stored while sorting the elements is kept temporarily in LDEF and
consists of lowest-referenced node number, element logical type index, number of nodes per
element, element physical type and number, section property indices and connected node
numbers. Since the looping is over element type code (itype in the DEF.xxxx.itype.nnod
datasets), elements with any given lowest-node number are encountered randomly. They
are processed as they are encountered and a directory to the records output to file L25 is
kept in array ISECT. The number of records written to L25 associated with a particular
node is stored in NDUMP.

The size and number of the blocked nodal records on L26 relative to problem parame-
ters determine the adequacy of the core allocation for element sorting calculated in TOPOEX.
If an error occurs because too little space has been allocated in TOPGEX for the sorted ele-
ment data (parameters LMAX, NBLOKS), the element sorting in ELSORT is attempted with
a larger value of LMAX. If the element sort has failed three consecutive times, it is reasoned
that the problem is simply too large for TOPO to handle given available core space and
the routine is aborted.

The generation of the MFILEs, KMAP..nsubs.ksize and AMAP..ic2.isize, hinges on
the management of the CONROW, CONECT, BLOCK and AVAIL arrays. These arrays are
sized based on trial values for ILMAX. MAXCON, MAXSUB » LT4, LTS5, LR4 and LRS5. These
values are updated if the MFILE generation fails. If the map generation fails three times,
it is reasoned that the problem is simply too large for TOPO to handle given available
core space and the routine is aborted.

2.1.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

ELCON manage the CONECT array

ELSORT sort elements according to lowest connected node

ELSUB find next available submatrix location — BLOCK array

EXCON print error message and abort if BLOCK is overfull

KMAP construct the KMAP once elements are sorted

PRECON construct the AMAP once elements are sorted

TOPOEX main driver routine for construction of maps

TOPOLD startup routine - resets, number of joints, scratch li-
braries

2.1-16 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

TOPO

Variable Routine(s) Description

AVAIL KMAP,PRECON AVAIL(k) = .TRUE. if submatrix k is available
BLOCK KMAP,PRECON BLOCK(i,j) = submatrix number for CONECT (4, j)
CONECT KMAP,PRECON CONECT(i,j) = i-th node connected to CONECT(1, j)
CONRNG KMAP,PRECON number of joints attached to current joint (incl joint)
CONROW KMAP,PRECON CONROW(i) = column number in CONECT of joint i
IFAIL ELSORT failure flag

ILMAX TOPOEX max nodal connectivity allowed

IPSA ELSORT print flag (print if greater than 0)

ISCT KMAP index of section property dataset entry

ISECT ELSORT directory of records written to NU6

ITYPE KMAP pointer into NS dataset for this element type

JPB TOPOEX joints per block for element sort

KA TOPOEX workspace

KAC ELSORT nodewise element definition data buffer

KFINAL ELSORT sorted element data buffer

LB4,LB7 TOPOEX core allocation pointers during map generation

LDEF ELSORT space to hold definition of one element

LLDEF ELSORT length of DEF.xxxx.itype.nnod record

LMAX TOPOEX max elements per block

LPJ TOPOEX approx average elements per joint

LR4 TOPOEX,PRECON AMAP block size

LR5 TOPOEX ,KMAP KMAP block size

LRECL TOPOEX,ELSORT maximum element block size

LRNG KMAP ,PRECON number of elements attached to current joint
LT1-LT8 TOPOEX core allocation pointers during map generation
LTYPE KMAP logical element type

MAXCON TOPOEX max active joints

MAXNN TOPOEX max nodes per element

MAXSUB TOPOEX max active submatrices

NBLOKS TOPOEX,ELSORT number of blocks joints divided into for element sort
NDUMP ELSORT number of dumps per block to NU6 during coarse sort
NELS ELSORT number of elements in definition record

NETOT TOPOEX padded estimate of total number of elements
NNODES KMAP,ELSORT number of nodes attached to this element

NSCT KMAP N4 of section property dataset name for this type
NSE KMAP element number within this type

NUB ELSORT scratch library used during coarse element sort

NU7 ELSORT scratch library for final element sort

2.1.8 USAGE GUIDELINES AND EXAMPLES

An example of the use of the KMAP data structure is contained in the section cn the
K processor.

Revised 1988/11/8

CSM Testbed Matrix Processors 2.1- 17

TOPO System Matrix Processors

THIS PAGE LEFT BLANK INTENTIONALLY.

2.1-18 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors K

2.2 Processor K

2.2.1 GENERAL DESCRIPTION

Processor K is responsible for expansion (in some cases) and assembly of element
stiffness matrices into the sparse format system stiffness matrix.

K is really a fairly simple processor. Most of the bookkeeping done in K is related
to the distributed storage scheme used for element data. As such, element directories,
name tables, and much extraneous EFIL data need to be stored merely to facilitate the
acquisition of element nodal submatrix data for assembly.

2.2.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions
as described in Reference 2.

2.2.2.1 Processor Resets

Argument Default Meaning
LREC 2240 output matrix record length

SA 0 Diagnostic print flag — core allocation

BLIB 1 Input library number for *.BTAB and DEF.*
ELIB 1 Input library number for *.EFIL.*

HLIB 1 Input library number for KMAP..nsubs ksize
OUTLIB 1 Output (matrix) library

SPDP lor2 Single- or double-precision output matrix
NAME K First field of output matrix daatset name

2.2.3 SUBPROCESSORS AND COMMANDS

Not applicable.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.2-1

K System Matrix Processors

2.2.4 PROCESSOR DATA INTERFACE

2.2.4.1 Processor Input Datasets

JDF1.BTAB.1.8
NS

ELTS.NAME

* EFIL.*
KMAP..nsubs.ksize

2.2.4.2 Processor Qutput Datasets

e K.SPAR.jdf2 (or name.SPAR.jdf2)

2.2.5 PROCESSOR LOGIC FLOW

Figures 10 through 14 contain logic flowcharts for key subroutines in K: the main
subroutine, subroutine KSMLD which handles RESET processing and some core workspace
allocation, subroutine ASKGO, subroutine ASKEX which directs matrix assembly, and
subroutine SPTRN* which transforms and assembles element stiffness matrices into the
global system stiffness matrix.

It is important to remember that K functions as much more than a matrix assembler.
In particular, K is responsible for the expansion of the SPAR “intrinsic” element stiffness
matrices for beam, plate and solid elements in to their full matrix forms. K also transforms
these matrices from element-local coordinate frames to the global system frames using the
transformation information stored in the EFIL. Lower-level subroutines such as ADDH,
TRIL and TRIL3 perform the expansion of the intrinsic stiffnesses. As such, these are
really element-specific routines embedded in the matrix assembler!

The *TRN* (e.g., SPTRNS, DPTRN3) subroutines are the actual assembly subrou-
tines. A generic example of this type of routine is the flowcharted SPTRN6 subrou-
tine. These subroutines take element stiffness blocks and transfer appropriate, transformed

nodal submatrices into the S workspace for direct assembly into the output matrix buffer
in subroutine ASKEX (or double precision routine DASKEX).

All assembly is performed on an element-by-element basis for a particular node, 1.¢.,
all elements referencing a certain node and higher nodes (in the sense of the elimination
sequence) are read-in for assembly to that certain node’s portion of the system matrix
block. Hence, the outer loop over number of nodes and the inner loop over the attached
clements, as directed by KMAP..nsubs.ksize.

2.2-2 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

call INTRO

process RESET commands
and set some core
allocation
(KSMLD)

|

perfarm the assembly
(ASKGO)

[
(call FINC' ')J

Figure 10 K main program logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors

2.2-3

System Matrix Processors

EIS
ORIGINAL PAG

process RESET
commands

read model

JOF1.87TA8.1.8
parameters et

liﬁimmﬁiiiwiiiiiiii_.

finalize output
dataset name
name.SPAR . n2

get stzing info
on AMAP. ..

[

install output
dataset
(DAL)

[

set up pointers for
assembly workspacs,
blocks of X, KMAP and
the NS dataset

I

get element directory
and allocate space for
EFIL pointers and data

nggt all alement names

l

find ssquence numbers
of all EFIL datasets
and get max. EFIL length

l

print core workspace

pointars if requested

Cores space

!

bn FIN('KORE'J
L

INJU

suffictent
?

Figure 11

RETURN

KSMLD logic flowchart.

2.2-4

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors

single
precision
assembly

l call DASKEX ,

rename output
dataset

RETURN

Figure 12 ASKGO logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors

2.2-5

System Matrix Processors

loop over all nodes in model
DO 5888 ISTAGE=1,J7

{
KMAP. .nsubs . ksize
get next AMAP eI Ty WY

block if needed

|

{ncrement node caunter (NJ4)
get current node number (JOINT)
and number of attached elements

(LRNG)

I

loop over attached alements
DO 2888 L=1,LRNG

|
get number of nodes (NNODES)
alement logical type (LTYPE)
directory pointer (NSE)
and type index (ITYPE)

increment KMAP pointer
and set EFIL pointars

1

* EFIL.*
get appropriate .
* EFIL.* record |

axperimanta)
eslement

E.
1
;
1
i
i
L

d.o.f./nocde
5898 ves (NiY
loop
assembla into S assemble ints S
(OPTRNS, DPSTRNS) (OPTRN3, DPSTRNI)
2498] G0 10
loop 788
/N /N GO T0O 1808
_ — N b4

Figure 13 ASKEX (DASKEX) logic flowchart.

CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

GO0 TO
1808

is
this a

s0lid element

N

expand intrinsic
stiffness
(TRIL3)

1

assemble into S
(*TRN3)

|

is
this a

beam elament

L)

sxpand and assemble
stiffrness (ADDH)

|

[

sxpand plate/shell

olement intrinsic

stiffness {n SLOC
¢ TRIL)

1

assemble into S
("TRNG)

1888 Tabel]
incremsnt KMAP pointer

< 7=
saga | 299
loop P
5089
loop

AN

end 2888 loop

Figure 13 Continued.

Revised 1988/11/8

CSM Testbed Matrix Processors

2.2-7

System Matrix Processors

5088
loop

get numbar of submatrices
(CONRNG) for this node

and computs space requirad
in stiffness dataset record

print srror
message

[
Fn FINC* INV ')]

is
node too
big for one K
record

will
this node fit
in current

20

ves

write current
K record to
database
and initialize
new K record

{ncrement # nodes
in this K record

i

move node number and
list of connectad nodes
to X buffer

I

transfer selectsd

submatrices from S

to K record buffer
{ 4888 loop)

end 5808 loop

]
 dr-te last £ recora m:z:.::-r:::r:j

j *0 databasa ! K.SPAR. jor2

Figure 13

ORIGINAL PAGE i8S
OF POOR QUALITY

Concluded.

2.2-8

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors

ORIGIMAL PAGE IS
OF POOR QUALITY

loop over a@ach
nodal submatrix in the
lower triangle of the
alement matrix
DO 26898 L=1,NNODES
DO 2888 K=1,L

[

initialize workspace
arrays GKLTL, HKL

l

transform element stiffness
HKL = TK(transpoge) * 6KL * TL
in loops 1188, 12088

|

transpose transformed
nodal submatrix it
required (MAP(N) < 8)

all
d.o.?. prasent
this node
?

ves

assembls submatrix into assemble those d.o.f.
global matrix buffer present into global
{ 1588 locp)} matrix buffer

(1788 loop)

]

end 2880 loop

RETURN

Figure 14 TRN3 (TRNS6) logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors

2.2-9

K System Matrix Processors

2.2.6 PROCESSOR DATA FLOW

Workspace storage is allocated for the S array, which holds the expanded, transformed,
nodal submatrix blocks for assembly. The S array is sized to hold KSIZE submatrix blocks
dimensioned at NDF by NDF (NDF = number of degrees-of-freedom per node). KSIZE is
defined in the KMAP..nsubs.ksize. Workspace is also allocated for one block of the output
system matrix, one block (record) of the KMAP..nsubs.ksize, the entire contents of the NS
dataset, a vector of dataset sequence numbers for all *.EFIL.* datasets, the contents of
the ELTS.NAME dataset, and the longest EFIL record present in the model. All of these
allocations are made in subroutine KSMLD.

Additional EFIL pointers are used in ASKEX (DASKEX) to assist in decoding the
rather cryptic EFIL internal record structure.

2.2.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

ADDH assemble beam elements

ASKGO switches on single/double to call ASKEX or DASKEX

ASKEX (DASKEX) main driver for assembly

KSMLD startup resets, dataset access, preliminary core alloca-
tion

SPTRN3 assemble 3 d.o.f. per node elements with transformation

SPTRN6 assemble 6 d.o.f. per node elements with transformation

DPTRN3 double precision output version of SPTRN3

DPTRN6 double precision output version of SPTRN6

DPSTRN3 double precision input/output version of SPTRN3

DPSTRN6 double precision input/output version of SPTRN6

TRIL expand intrinsic element stiffness (shells)

TRIL3 expand intrinsic element stiffness (solids)

2.2-10 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors K

Variable Routine(s) Description

CONRNG ASKEX number of submatrices attached to current node
GKLTL *TRN* transformation workspace = Klocal * Transform
HKL *TRN* transformation workspace = Kglobal

ITYPE ASKEX pointer into NS dataset for this element type
LRNG ASKEX number of elements attached to current node
LTYPE ASKEX logical element type

MAP *TRN* submatrix location vector for assembly

NJ4 ASKEX joint counter within current block of KMAP
NNODES ASKEX number of nodes attached to current element
NSE ASKEX element number within this type

S ASKEX submatrix assembly workspace

SLoc ASKEX local workspace to hold expanded element stiffness

2.2.8 USAGE GUIDELINES AND EXAMPLES

An example of the use of the information contained in the KMAP..nsubs ksize dataset
to assemble the stiffness matrix of the example model of §1.3 is presented in figure 15.
The assembly of the first two nodal-block rows of the upper triangle of the system matrix
are shown in detail. The interested reader will find the logic flowcharts (see fig. 13) for
subroutines ASKEX and DASKEX to be helpful in understanding this example. The steps in
the illustrated assembly process are as follows:

A) Loop over all nodes in the model. For the first node:

1) Assemble, the nodal-block submatrices for each of the LRNG
elements whose lowest-numbered node (in the sense of the
elimination sequence) is the current node. The assembly
is accomplished by accumulating nodal-block submatrices
from all contributing elements into appropriate slots in the
S workspace. The allocation of these S workspace slots is
done in TOPO and communicated by the MAP array in the
KMAP..nsubs.ksize data structure. Note that negative in-
dices in the MAP array indicate that the transpose of the
element nodal-block submatrix is to be assembled into S.

a) The first element is a (two-node) beam element.
Therefore, three nodal-block submatrices form the
upper triangle of the element matrix. These three
submatrices are moved into slots 1, 2 and 3 in the
S workspace. Since this is the first element, the
nodal submatrices do not need to be accumulated
into the previous contents of the S workspace.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.2-11

K System Matrix Processors

b) The second element is a triangular plate element
having six nodal blocks in the upper triangle of its
element matrix. These submatrices are accumu-
lated into slots 1-6 of the S workspace.

2) After accumulation of the nodal submatrices from the sec-
ond element’s matrix into S, the slots corresponding to the
first nodal-block row of the system matrix (1, 3 and 5) are
completely assembled and can be moved to the system ma-
trix record buffer. Once transferred, these blocks in the S
workspace are no longer needed and are free to be used for
accumulation of other submatrices.

The above process is repeated for each of the six nodes in the example model.

2.2- 12 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors K

A) for node 1 (ISTAGE=1): connected element MAP array
elements nodes contents
1 1,2 1, 3,2
LRNG—2<6 1’\12/5 1,3,5,2,6,4
CONRNG =3

1) Assembly of Element Stiffness Matrices :

(1,1 x.2) expanded matrix
for beam element
2,2) (in nodal blocks)
/ /“/" :
..a"‘”"‘d“
S workspace: {/‘,/5”

a) Element 1:

(1,1)1(2,2)((1,2)

1 2 3 4 5 6 7 8 9 10

b) Element 2:

aLnf a2 e expanded matrix
s / for triangular
/ . 2.2)] [(2.5) plate element
v - (in nodal blocks)
~ /’ o
S workspace: //// [_ ,,_,..iw-—"”"‘/”
B TErImaD

(1,1)](2.2)|(1,2)|(5,5)|(1.5)}(2,5)

1 2 3 4 5 6 7 8 9 10

2) Transfer to System Matrix Record Buffer:

Index information \
57

/ ‘ :
7///////% (1"1)\(1'{) ;‘ W/% Syst;r:ct\)/ll'ztm(

SUBMAP =1,3,5

S workspace: //// \\

* L2,y * [, * |25

1 2 3 4 5 6 7 8 9 10
* . Block is now free for accumulation of other nodal submatrices

Figure 15 Example of the system matrix assembly process.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.2-13

K System Matrix Processors

B) for node 2 (ISTAGE=2): connected element MAP array
elements nodes contents

2 2,3 2,3,1

LRNG=3<4 2,5 2,6, 4
7 2,3,6,5 2,3,7,6,1,8,09,

N\ 5,-10,4
CONRNG =4
1) Assembly of Element Matrices:
element 2 element 4 clement 7

(2,2) 1(2,3) (2,2)| |(2.9) 2,2)) [(2,3)] |(2,.86)] [(2,5)

\ = Sy

(3,3) (5.5) (/‘(3.3) (3.6)] | (3.5
T /

(6,6)] | (6,5)

(5.5)

S workspace:

(2,6)1(3,6)(3,8)[(5.6)

2) Transfer to System Matrix Record Buffer:

Index information
— W W System Matrix
% (2"2)(2\{'”\(2{) / Record

SUBMAP =2,3,6, 7

S workspace: // / N

[(a.z)l . * ‘(S.n (6, 6) (3.6)[(3,5)[(5.6)

1 2 3 4 5 6 7 8 9 10
* - Block is now free for accumulation of other nodal submatrices

Figure 15 Concluded.

2.2- 14 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors INV

2.3 Processor INV

2.3.1 GENERAL DESCRIPTION
Diagonal-scale factoring of a system matrix.

LDLT = A

o A is a sparse system matrix
o L and D are stored as the inverted matrix

The operation of INV reflects a conventional diagonal-scale factoring process. The
only specialization is for the treatment of prescribed degrees-of-freedom where the factoring
process is stopped in a column for the row where a prescribed d.o.f. is encountered and
for succeeding rows. Unfactored coefficients are kept in these untouched positions, and
the forward-reduction process in SSOL is structured to ensure the proper treatment of
linear internal forces associated with these prescribed d.o.f. Thus, the INV and SSOL
processors exhibit interdependence through both the factored matrix data structure and
the specialized treatment of applied displacements.

When interpreting the factored matrix database data structure one needs to be aware
that the nonzero d.o.f. map in the INV record for a particular node actually contains
pointers to those d.o.f. not constrained on the START card (in TAB) that are also not
constrained in the selected CON data. Rows corresponding to constrained d.o.f. are not
present in the factored matrix. As such, knowledge of the basic problem parameters stored
:n JDF1.BTAB.1.8 is required to decode fully the factored matrix data structure.

2.3.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions
as described in Reference 2.

Revised 1088/11/8 CSM Testbed Matrix Proccssors— 2.3-1

System Matrix Processors

2.3.2.1 Processor Resets

Argument Default

Meaning

K K First feld of input matrix dataset name (will also be
second field of output factored matrix dataset name)

DZERO 1.0E-05 Zero test for diagonal terms

SPDP 1 Single (1) or Double (2) precision factored matrix

CON 1 ncon in CON..ncon dataset

KLIB 1 Library containing A matrix

KILIB 1 Destination library for factored matrix

NIMAX 50 Max. number of nodal row blocks in one record of the
factored matrix

LRA 3584 Output (factored matrix) dataset record length

ILIB (KLIB) Library containing AMAP..ic2.isize

2.3.3 SUBPROCESSORS AND COMMANDS

Not applicable.

2.3.4 PROCESSOR DATA INTERFACE

2.3.4.1 Processor Input Datasets

JOF1.BTAB.1.8

CON..ncon

AMARP..ic2.isize

K.SPAR.jdf2 (name.SPAR.jdf2)

2.3.4.2 Processor Output Datasets

¢ INV.K.ncon (INV.name.ncon)

2.3.5 PROCESSOR LOGIC FLOW

Figures 16 through 20 contain logic flowcharts for the major INV subroutines including
the main subroutine, subroutine AF LD, subroutine AFGO, subroutine AFEX (double precision
version DPAFEX) which directs the factoring, and subroutine RED (double precision version
REDDP) which actually performs the elimination calculations. Logic for single or double
precision factoring of matrices is separated by subroutine and based on the precision of
the input matrix. If double precision factors are requested, the input matrix must also be
in double precision. If single precision factors are requested (this is the default) and the
input matrix is double precision, the factors are truncated in REDDP before being written
out in DPAFEX.

2.3-2 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors INV

call INTRO

process RESET
commands
{ AFLD)

I

do the factoring
{ AFGOD)

|

OONE
call FINC® °)

Figure 16 INV main program logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.3-3

INV S i
System Matrix Processors

ORIGINAL PAGE IS
OF POOR QUALITY

collect and apply
RESET arguments

JOF1.87A8.1.8

read basic
nodal data

get size parameters
from datasets
AMAP... and K.SPAR.n2

]

get-up output dataset
INV.X.ncon i

[

partition core workspace
for factoring

is
workspace
sufficient

N

[can FIN('KURE')J

read constraint | CON..ncon ﬁg
case data s s

Figure 17 AFLD logic flowchart.

2.3-4 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

INV

OFiaesfL TEGE S
OF PG QUALITY

single
pracision
tactoring

‘ call DPAFEX l

update TOC for
factored matrix

|
print factoring
statistics and
define macros
NUM_SING and NUM_NEG

Figure 18 AFGO logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors 2.3-5

INV

System Matrix Processors

tnitialize and
clear the
workspace S

!

loop over all nodes in
stiffness matrix

5@es

loop

DO 5888 ISTAGE=1,J7

|
read-in next record
of AMAP. ..
it required

fncrement node counter
within current AM4P
record and set JOINT
to current node number

I

read-in next record of K.SPAR. jdrz
X matrix, it required

l

AMAP. . 1c2. 1size

increment node counter -
within current X record

and set NSUBS to

21 !
number of connected dlocal
nodal submatrices Latapase
|
unpack constraint data
(DECODE)

l

construct MAP of
non-constrained d.o.f.
(3188 1loop)

!
get number of connactad
nodes from AMAP buffar
and set submatrix painters

1c0p over connected submatrices
to add to S workspacs
00 1888 ISuB-1,NSUBS

L

Figure 19 AFEX (DPAFEX) logic flowchart.

2.3-6

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors

INV

1808
Yoop

56888
1cop

Y

locate connected
node from K in
AMAP buffer

found
node 1n AMAP

20

et ?

add this submatrix
to the S workspace
(788 loop)

l

increment pointer to next
connected node in K

l

print error
massage:
"AMAP/K SPAR
INCONSISTENCY"

snd 1888 lcop

write record
to database

s@t pointar to next node's
submatrix block row in K

will

this node fit ©e

STOP
0

into INV
?

5888
loop

Figure 19

Continued.

|

print message:
“A-FILE BLOCK SIZE

INSUFFICIENT"
enough
space in this
INV record
$TOP
']
ves
BTSRRIy
INV.K.ncon #§
%!ﬂamnﬁ
incremant INV
recard pointars
and counters
global
Latabase

Revised 1988/11/8

CSM Testbed Matrix Processors

23-7

INV

System Matrix Processors

5088
loop

node completsly
constrained

N1

transfer MAP
to JAV record

J

copy CONRNG and
1ist of connected nodes
to IAV recaord buffer

[
sliminate the
current (ISTAGE th)
node in RED/REDOP

l

increment INV and
AMAP puffer pointars

|

compute determinant
increment for this node

[
{ and 5088 loopj

|

store the last
racord of IAV

check sign of
determinant

I

INV.K.ncon

store determinant
data and define
macrasymbols
COEF_CET and EXP18_O€T

Figure 19

Concluded.

'RIGINAL PAGE IS
OF POOR QUALITY

2.3-8

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors INV

ORIGINAL PAGE IS
OF FCOR QLALITY

is
node completely
constrained

ves GO T0
2588

move active rows of
connected nodal submatrices
from S workspaca to INV buffer
(1880 joops)

1

loop over nonzero d.o.f. for
this node to factor as far
as the last row belonging
to this node
D0 1488 K=1,NZERD

this d.o.f.
prescribed

stors diagonal
term in PIVOT

ts
diagonal
>8
?

ves

is
diagonal
<8

[ves

increment negative
root countar
and print message r*

____.________J increment singularity

|
counter and print message
invert diagonal P 9

tearm

I

modify terms in connected
rows below this diagonal co 10
| 2588

44{;;; 1488!009~J
L

\
N

Figure 20 RED (REDDP) logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors

2.3-9

INV

System Matrix Processors

are
other nodas

GO 10
2588

connected
?

loop over rous
of nonzero d.o.f. and
eliminate below diagonal
in the S workspace

DO 2180 K=1,NZERC

is
this d.o.f.
prescribed

ves

loop over connactad
rows and perform
elimination
(2888 loop)

I

[end 2188 Toop
I

[

2588 labe!

H

initialize S workspacs
blocks in the current
nodal submatrix Block rows

Figure 20 Concluded.

ORIGENAL PAGE
OF POOR QuALNTY

23-10

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors

INV

2.3.6 PROCESSOR DATA FLOW

Core workspace is allocated in subroutine AFLD. Workspace for the factoring opera-
tion (referred to as the S workspace in the code) is sized to hold isize nodal submatrices
as determined from the AMAP generation via the name of the AMAP..ic2.isize dataset.
Additional space is allocated for the entire CON..ncon dataset and one record each of the
K.SPAR.jdf2, AMAP..ic2.isize and INV.K.ncon datasets. All of the difficult details of man-
aging submatrix blocks in core have been relegated to the topology analysis in TOPO and,
by the time INV is invoked, are completely coded into the AMAP data structure.

2.3.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

AFEX(DPAFEX) factorization driver

AFGO switches on single/double to call AFEX or DPAFEX
AFLD startup resets, dataset access, core allocation, etc.
DECODE decodes packed CON..ncon entries

RED(REDDP) reduction for current joint

Variable Routine(s)

Description

CONRNG AFEX

MAP AFEX
JOINT AFEX
NSUBS AFEX
NZERO AFEX,RED
PIVOTS RED

S AFEX,RED

number connected submatrices in factored matrix
map of nonzero dof for current node

node counter for factoring

number connected submatrices in unfactored matrix
number nonzero dof for current node

diagonal terms for nonzero dof at current joint
factorization work area

2.3.8 USAGE GUIDELINES AND EXAMPLES

None.

Revised 1988/11/8

CSM Testbed Matrix Processors

2.3-11

INV System Matrix Processors

THIS PAGE LEFT BLANK INTENTIONALLY.

2.3-12 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors SSOL

2.4 Processor SSOL

2.4.1 GENERAL DESCRIPTION
e Calculate solutions x to

Ax=f

A is a sparse system matrix that has been factored by INV

f is the aggregate of applied nodal forces and element dis-

tributed loads

o x is the sought-after displacement solution vector
The operation of SSOL reflects a conventional forward reduction and backward substi-

tution operations with specialized treatment of applied displacements. This specialization
is compatible with the operation of INV, where the matrix factorization process is modified
to ensure the presence of the forward-reduction-compatible terms in the factored matrix.
Thus, the INV and SSOL processors exhibit interdependency through both the factored
matrix data structure and the specialized treatment of applied displacements.

2.4.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions
as described in Reference 2.

2.4.2.1 Processor Resets

Argument Default Meaning

K K First field in dataset name of unfactored matrix; second
field in dataset name of factored matrix

KLIB 1 A matrix library

KILIB 1 Library containing factored A

QLIB 1 Library containing applied forces, displacements, solu-

tion vectors and reaction forces

EP 1 Flag for residual error calculation

L1 1 First input vector for solution (1)

L2 0 Last input vector for solution (1)

CON 1 Constaint case number (ncon)

REAC 1 Flag for computation of nodal reaction forces
SET 1 Load set number (iset of APPL.FORC.iset.1)
NMAX 0 Number of vectors to process at a time (1)
NUFF 0 Scratch library for residual error analysis

(1) — calculated by SSOL if required.

Revised 1988/11/8 CSM Testbed Matrix Processors 24-1

SSOL System Matrix Processors

2.4.3 SUBPROCESSORS AND COMMANDS

Not applicable.

2.4.4 PROCESSOR DATA INTERFACE

2.4.4.1 Processor Input Datasets

JDF1.BTAB.1.8
APPL.FORC.iset.1
EQNF.FORC.iset.1
APPL.MOTl.iset.1

INV.K.ncon (INV.name.ncon)
K.SPAR.jdf2 (name.SPAR.jde)

2.4.4.2 Processor Output Datasets

e STAT.DISP.iset.ncon
e STAT.REAC.iset.ncon

2.4.5 PROCESSOR LOGIC FLOW

Figures 21 through 29 contain logic flowcharts for the major SSOL subroutines includ-
ing the main subroutine, subroutine DSGO, subroutine DsSX (double precision DSXDP) which
directs all SSOL functions, subroutine UEVAL (double precision DUEVAL) which directs the
forward reduction and backward substitution operatons, and subroutines FRWRD and BCKSL
(double precision DFRWRD and DBCKSL, respectively) which actually perform the forward
reduction and back substitution. Logic for single or double precision factored matrices is
separated by subroutine.

The execution of subroutine DSX is divided into two loops over groups of right-hand-
side (r.h.s.) vectors. The first loop contains an inner loop to acumulate applied forces and

These r.h.s. vector blocks are stored on a scratch library for later use. Subroutine UEVAL
is then invoked to perform the solution operation. Nodal reaction forces are calculated in
the second r.h.s. vector group loop.

One should note that the factored matrix actually contains partially factored coeff-
cients for off-diagonal terms associated with degrees of freedom at which displacements are

d.o.f. with the r.h.s. vector containing the value of the prescribed displacement instead of
an applied force. The backward substitution process is skipped for prescribed d.o.f.. This
procedure results in the correct displacements being calculated for non-prescribed d.o.f.
including the effect of internal forces due to the prescribed displacements. The displace-
ment solution vector also receives the correct prescribed displacement values through this
process. Static nodal reactjons are calculated based on the full solution vector and the
unconstrained stiffness matrix.

2.4-2 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

SSOL

Figure 21

call
INTRO

process RESET
commands,
allocate core space,
set-up scratch units
(OSLD)

SSOL main program logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors

2.4-3

SSOL System Matrix Processors

is
factored matrix
single prec.

VT3

is
factored matrix
double prec.

ves

[::?;-33;1 call DSXDP
[I

Figure 22 DSGO logic flowchart.

24-4 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

SSOL

collect and apply
RESET argumants

|

set-up scratch
libraries

| JOF1.8748.1.8
read basic nodal data m'“n?i

and get info about
stiffness and factored
stiffness matrices

is
cors big

enough for one
voc}or

ves

NTL

check T0C for
APPL .FORC. 1set. 1
and
APPL .NOTI. iset. 1
datasets and detarmine
number of vectors in this
group of nodal gquantities

I

initialize core uorkspaca]

|

TR A IR L AR

check TO0C for
EQNF .FORC. iset. *
dataset and check total
nunber of vectors this group

L R TrY

at least one

vector been
defined

N

are
all vectors

RETURN l

Figure 23

correct size

NI

DSLD lo-gic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors 2.4-5

SSOL

System Matrix Processors

Y

crsitc
STAT.DISP. 1set.ncon
dataset

decrement max .
numbar of vectors
2llowsd (NMAX)

attempt to allocate
core workspace for
requested number of
vectors in load set

snough core
available

print NMAX and
amount of unusad
core workspace

[

sot-up task
flags in L3DO

Figure 23 Concluded.

24-86

CSM Testbed Matrix Processors Revised 1988/11/8

SSOL

System Matrix Processors

‘ get-up countars

loop aver groups of vectars
DO BB88 IPASS=-1,NPASS

B 1

loop over number of
force vectors in this
group
DO 588 L=1,NV

]

zerc-out total
force vector F{*,L).

!

if applied nodal forces APPL .FORC.
e

are defined for this
Yoad set, read them

i? squivalent nodal forces
ara defined for this
load set, read them

|

sum applied and
equivalent nodal forces
for this load set.
vector F{*,L) now
contains total forces
for this load sst.

iset.1
1

EQNF.FORC. Iset.1 %
PIRNRT TR L L

]
it applied displacements APPL .NOTI. iset.1
ars defined for this |wewmsmessemsEmnmns

load set, read them
into U(*,L)

end 588 loop
888

1000 writa this group of total

forcae vectors to scratch
library if error check
or reactions requestad

|}

\j
A

Figure 24 DSX (DSXDP) logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors

2.4-7

SSOL System Matrix Processors

L]
Tcop solve for thisg INV.name . ncon

group of vectors mmaammﬂawmmm!,
call UEVAL/DUEVAL #

T
1

write this group of
solution vectors to
scratch library

I

convert solution
to single precigion
(DUEVAL only)

I

write this group af
solution vectors to |, T S
solution dataset STAT.OISP. iset.ncon

L L T e L s

P

i
i

end 828 loop

reactions
reguested

set-up noda! reactions
dataset STA7.REAC. iset.ncon

l

loop over groups of vectors
DO 1808 IPASS=1,NPASS

{
read total farce and

sglution vectors from
scratch library

I

compute nodal reactions

oy

RS s g s

g;

name.SPAR. jdrz k]
and snergy norm errors e iasmmpinam il
call REAC/DREAC STAT.REAC. 1set.ncon

L end 1888 loop
RETURN

Figure 24 Concluded.

2.4-8 CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

SSOL

loop over nodes for
forward substitution
DO 1188 JNT=1,J7

1

read-in next block of

necessary

[

INV.name.ncon

factored matrix {f |yemeswemsusmen—m

increment node counter (NJ2)
get actual node number (JOINT)

get number of non-zero D.0.F. (NZERO)
get number of connectad nodes (CONRNG)

[

loop over vectors in this group
to do forward substitution
DO 1895 N=1 NV

{

[call FRNRD/DFRWRD]

I

! end 1895 loop]

T

increment TNV buffer
pointer (L2)

|

]' end 1188 loop l

Figure 25 UEVAL (DUEVAL) logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors 24-9

SSOL

System Matrix Processors

loop over nodes for
backward substitution

0O 2568 JINT=1,J7
[

ad-1n next block
re nex ° INV. name . ncon

of factored matrix MMM
[
i
i

if necessary
NOTE: blocks are read
in reverse order!

decrement node counter (NJ2)
get actual node number (JOINT)
get number of non~zero D.0.F. (NZERO)
get number of connected nodes (CONRNG)

|

locop over vectors in this group
to do backward substitution

DO 2489 N=i,NV

L call acxsuoecxstj

47 end 2498100p41

I

i end 2588 loop l

caleculate

energy
?

VWTS

read total force record
from scratch library

[

calculate asnergy
EN=«F *y RETURN

Figure 25 Concluded.

24-10

CSM Testbed Matrix Processors Revised 1988/11/8

System Matrix Processors

SSOL

locp over non-zero D.0.F.
for this node

DO 1588 K=1,NZERD

|

get actual 0.0.F. number
from MAP(K)

is
D.0.F. imposed
displacament

ves

[set DFU = displacmen:} [set DFU = forceJ

{

]

|

reduce F for all
connacted 0.0.F.

Figure 26

and 1508 loop

RETURN

FRWRD (DFRWRD) logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors

24-11

SSOL

System Matrix Processors

initialize

Tocp backward over non-zero
D.3.F. for this nods
DO 1488 KK=1,NZERQ

I

get actual D.0.F. number
from MAP(K)

is
0.0.F. imposed

displacement

vas

[ialo by dhgonﬂ
I

backward reduction
of this component
by all connected D.0.F,
result accumulated in UM/DUM

l

transfer result to
displacement vector U

—
‘l end 1488 loop ’
RETURN

Figure 27 BCKSL (DBCKSL) logic flowchart.

2.4-12

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors

SSOL

loop over vectors in
group and calculate
E(N) = F(1,N) * U(1,N)

[

Muftiply stiffness and .SPAR. Jdf2
displacement vectors ;
call OSMULT/DOMULT !3

l

loop over vectors in group

00 788 N=1i,NV

l

calculate U times
product of stiffness
and displacement vector
in EN

|
computs energy error
(E(N)-EN) 7 EN
and print out

end 789 loop

read-in total force
vector group from
scratch library

[

calculate residual
vector group

l

writs reactions vectors
(single precision)

i
i
:
3
!
3
%

R—
SYTAT.REAC. iset. ncon

Figure 28 REAC (DREAC) logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors

2.4-13

SSOL

System Matrix Processors

ORIGINAL PAGE 1S
OF POOR QUALITY

initialize
compute vector & block
lengths, and zero output

loop over nodes faor
sparse matrix multiply

00 1088 JOINT~1,J7
!

read-in next block of
sparss matrix {7
necessary

I

nase.SPAR. jdf2

increment node counter (NJK)

get number of submatrices (NSUBS)

|

loop over submatrices to convert
SUBMAP to integer form

|

loop over vectors in this group
to perform matrix multiply

DO 998 N=1,NV

[can DML TEX/DDMLTX]

[end 988 loocp I

[

increment matrix buffer
pointer (LK)

[

Figure 29

ﬁ end 1888 Toop J

l RETURN

DSMULT (DDMULT) logic flowchart.

24-14

CSM Testbed Matrix Processors

Revised 1988/11/8

System Matrix Processors SSOL

2.4.6 PROCESSOR DATA FLOW

Core workspace is allocated in subroutine DSLD. Workspace is always allocated for
a directory vector of dataset sequence numbers indicating all applied loading vectors to
be included in a particular solution process. Beyond this directory vector, workspace
is allocated for a vector of task flags indicating which vectors of groups to process, for
scratch blocks of assembled right-hand-side vectors and solution vectors, and for a block of
either the unfactored or factored system matrix, whichever is larger. Any remaining core
workspace is used to store the applied force vectors. If all of these data can fit into the
available core space, execution proceeds. If not, the number of right-hand-side vectors to
be processed in one pass is decremented and allocation is attempted again. If no vectors
can be accommodated in the available workspace along with all other required data, the
processor terminates. Pointers calculated in DSLD are stored in common block /DSAD/ and
used in the call to DSX in subroutine DSGO.

A scratch data library (NUFF) is used to hold accumulated right-hand-side vectors and
solution vectors for energy calculation and residual error checking.

2.4.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

BCKSL(DBCKSL) backward substitution

DMLTEX (DDMLTX) low-level workhorse for DSMULT (DDMULT)

DSGO switches on single/double to call DSX or DSXDP
DSLD startup resets, dataset access, core allocation, etc.

DSMULT (DDMULT) multiply single-precision (or double-precision) sparse
matrix by double-precision vectors

DSX(DSXDP) main solution driver routine

FRWRD (DFRWRD) forward substitution

REAC(DREAC) compute static reactions and force errors
UEVAL (DUEVAL) solution (forward and back driver)

Revised 1988/11/8 CSM Testbed Matrix Processors 24-15

SSOL System Matrix Processors
Variable Routine(s) Description

CONRNG UEVAL number of connected joints

DFU FRWRD total force or specified displacement

E REAC dot product of F and U

EN UEVAL energy = F* U

EN REAC dot product of K*U and U

ERR REAC error (E - EN)/EN

F DSX,REAC total force vectors

JOINT UEVAL actual current joint number

LK DSMULT matrix buffer pointer

LSDO DSLD,UEVAL,DSMULT vector process flag

MAP FRWRD,BCKSL map of nonzero dof at current joint

NJ2 UEVAL joint counter within current INV block

NJK DSMULT joint counter within current block of matrix
NMAX DSLD number of vectors processed at once

NPASS DSLD,DSX number of passes required to process all vectors
NSUBS DSMULT number of connected submatrices

NUFF DSLD,REAC,DSX error analysis and reactions scratch library
NZERO UEVAL,FRWRD,BCKSL number of nonzero dof at current joint

U DSX,BCKSL,REAC solution vectors

UM/DUM BCKSL result of back reduction (displacement)

2.4.8 USAGE GUIDELINES AND EXAMPLES

A deficiency was found and corrected in the logic of SSOL relating to the use

of prescribed motion components.

The deficiency, briefly, is that no check of the

APPL.MOTl.iset.1 contents is made to ensure that degrees-of-freedom constrained to be
zero in the relevant CON..ncon dataset are indeed zero in the APPL.MOTl.iset.1 dataset.
Nonzero values in these positions of APPL.MOTLliset.1 will cause erroneous results to
be calculated in the back-substitution phase of the solution. The existence of an in-
correct solution will be obvious to the user upon examination of the force errors in the
STAT.REAC.iset.ncon dataset. The moral: “Always check your reactions!”

24-16

CSM Testbed Matrix Processors

Revised 1988/11/8

Utility Processors

3.0 Utility Processors

Various utility processors are available in the CSM Testbed. The utility processor for
general matrix and vector arithmetic is called AUS and is described in this Chapter. AUS
provides various matrix arithmetic functions as well as subprocessors to construct and
modify data tables. Commands to perform the matrix and vector functions are summarized
in Table 3.0-1 according to their functional categories. Detailed information about the
implementation of such commands is contained in the remainder of this section.

Revised 1988/11/8 CSM Testbed Matrix Processors 3.0-1

Utility Processors

Table 3.0-1 Selected AUS Commands

Command Command Description

ARANK Form vector of pointers to rank source dataset
in ascending order

DRANK Form vector of pointers to rank source dataset
in descending order

GTOL Transform joint motion, force, or moment components
from global to local joint reference frame

LTOG Transform joint motion, force, or moment components
from local joint to global reference frame

NORM Normalize a system vector

RECIP Take reciprocal of single or multiblock dataset i.e.,
zp=1./z;

RIGID Define rigid body motion

SQRT Take square root of single or multiblock dataset it ie.,
z; = (sign of z:,-)\/m

SQUARE Square a single or multiblock dataset i.e., z; = z,2

SUM Add datasets

UNION Concatenate records of one or more datasets into one
dataset
Matrix Multiply Commands

MTRA Transpose a real, multi-block rectangular matrix

MXTY Matrix multiply for multi-block datasets: Z = XTYy

MXV Matrix multiply for multi-block datasets: Z = XY

PRODUCT Matrix multiply: czXeyY where ¢, and
cy are real constants and X and Y are system matrices

RINV Matrix inverse for a single-block dataset

RPROD Matrix multiply for single-block datasets: Z = X7y

RTRAN Transpose a single-block dataset

XTY Matrix multiply for multi-block datasets

XTYDIAG Matrix multiply for multi-block datasets when result is
known to be diagonal

XTYSYM Matrix multiply for multi-block datasets when result is
known to be symmetric

3.0-2 CSM Testbed Matrix Processors Revised 1988/11/8

Utility Processors AUS

3.1 Processor AUS

3.1.1 GENERAL DESCRIPTION

e General matrix and vector arithmetic operations

o Sparse matrix addition (SUM)
C=c1A +c2B

A Sparse or diagonal matrix
B: Sparse or diagonal matrix
C Sparse or diagonal matrix

Sparse matrix & system vector multiplication (PROD)

(o]

z = c1C2AX

A : Sparse or diagonal matrix
x: System vector (SYSVEC format)
z: System vector (SYSVEC format)

Diagonal matrix result (XTYDIAG)

[o]

D=xTy

x : Multi-block dataset
y : Multi-block dataset
D: Diagonal matrix result

o Other specialized functions:
ARAN, DRAN - Form sorting index
LTOG,GTOL-SYSVEC coordinate transformations
NORM - Normalize system vector
RIGID - Construct rigid motion vectors

o Functions for general vectors:
SQRT - Termwise square-root
SQUARE - Termwise square
RECIP - Termwise reciprocal
MXTY, XTY -z =xTy
MXTRAN -z = x7
MXV -z =Xy
XTYSYM - B =xTy
RINV - Z =X"!

[}
[

Revised 1988/11/8 CSM Testbed Matrix Processors 3.1

AUS Utility Processors

RPROD - z = xy
RTRAN -z =xT

o Functions for substructure generation:
SSID - Set substructyre identifier
SSPREP - Prepare substructure definition
SSM, SSK - Generate substructure mass, stiffness
matrices

3.1.2 PROCESSOR SYNTAX

3.1.2.1 Processor Resets

None.

3.1.3 SUBPROCESSORS AND COMMANDS

Command Default Meaning

INLIB 1 Input library (default)

OUTLIB 1 Output library (default)

DEFINE - Define correspondence between a symbol name and its
library and dataset

MACRO - Set values for CLIP macrosymbols from database enti-
ties

TABLE - Invoke TABLE subprocessor

SYSVEC - Invoke SYSVEC subprocessor

ALPHA - Invoke ALPHA subprocessor

ELDATA - Invoke ELDATA subprocessor

AUS commands such as SUM, PROD, and XTYDIAG take the algebraic form

output dataset = comand(input_data.set_l, inputjata.set_z)

Commands such as SQRT and NORM, which use only one input dataset take the
form
output dataset = comand(z'nput_dataset_l)

3.1-2 CSM Testbed Matrix Processors Revised 1988/11/8

Utility Processors AUS

3.1.4 PROCESSOR DATA INTERFACE

3.1.4.1 Processor Input Datasets

e JDF1.BTAB.1.8
e User-specified datasets

3.1.4.2 Processor Output Datasets

o User-specified datasets

3.1.5 PROCESSOR LOGIC FLOW

Figures 30 through 32 contain flowchart diagrams for the AUS top-level subroutine,
subroutine PRP2 and subroutine SSUM. Subroutine AUS controls, in detail, the operation of
the AUS processor. Subroutine PRP2 manages the symbolic names of external matrix and
vector data, used to indicate the sources of command-argument data and the destinations of
the resulting data for all AUS functions. Subroutine SSUM implements the SUM command
in AUS and is architecturally similar to subroutine SPROD which implements the PROD
function.

Additional subroutines are quite numerous and implement the myriad additional AUS
processor functions, not all of which are distinctly defined. With little variation, these addi-
tional subroutines retain the same basic architecture employed in SSUM, i.e., each functional
subroutine handles its own argument interpretation, local data management, input-output
management, and invocation of (generally) lower-level computational routines.

Revised 1988/11/8 CSM Testbed Matrix Processors 3.1-3

AUS

Utility Processors

oRIGMAL TR S

OF PCOR QGAL’T\{ initialize symbo)
table in RSET

I

read ths problem
definition dataset
T

1888 labe!

60 T0 6088

1 ves
call FINC® ')
at 6888 labe!

RETURN
v
G0 10 call SCNTOC
5ees
v
| call ELDATA

(H

ALPHA,
SYSVEC or

JABLE command [N

VES
TABLE
$ command
18948)

G0 T0 ve
set NI, NJ, ITYPE
6O TG (defaults to B,
5808 # nodes, -1)

T L L

Figure 30 AUS main program logic flowchart.

GO0 TO
16939

L7
N

3.1-4 CSM Testbed Matrix Processors

Revised 1988/11/8

Utility Processors AUS

oMyt 0,
. © AT Yy
7I< T T
N
h G0 T0 ’
GO0 TO 1825
5898 SYSVEC
command
G0 T0 GO 10
1eed set NI = 6 oo 1838
NJ = # nodes
ITYPE= -1
{ 1825 1abel
60 10 call READER
2288 1838 Tabs!
KLASS = 1
sat value
of ZERO
s8t substructure
tag value ITAG
set default
names
G0 TQ call SSPREP
58908
Gfa;g 6o 10
2288
/N
4 RS A

Figure 30 Continued.

Revised 1988/11/8 CSM Testbed Matrix Processors 3.1-5

AUS

Utility Processors

GO 70
10649

G0 10
1868

ORIGINAL PAGE IS
OF POOR QUALITY

call SSMK

G0 10
5068

|

set ID to point
to index of command
in 1ist of INLIB, OUTLIB
DEFINE and MACRO commands.

process INLIB,

QUTLIB, DEFINE

ar MACRQ command
{ PRP2)

ves
2088 1abe!

J

GO 10
2284

is
length of
command 0.K.

Q0

60 T0
3eaqe

set ID to point
to fndex of command
in function list

ID=-8
(1.9. not a
function)

ves

laap through function arguments
(D0 2498 IAR=1,NAR)
to collect scaling constants
and check data symbols (PRP2)

GO TO
5888

2298 label

set-up autput
GO0 10
dataset TOC info 1889

e sl

Figure 30 Continued.

3.1-6

CSM Testbed Matrix Processors

Revised 1988/11/8

Utility Processors AUS

-~ e
(S-SR A

OF POCR GuaLiTY

s -1"‘ -T"
N v Vv
GO TO G0 T0
508008 3000
ve
! call SSUM
install output
GO 10 dataset
1884 (LI0)
g 0
ves 3808
call TITLl
Go 10 call RDMAT
2768
computed G0 TO 2582 labe]
to salect appropriate
function routine
This is for KLASS=2
functions
|
ey | s
o T0 Faﬂ ¢ function)J”“ e
1888 — i
2798 label
finalize output
datasat's TOC
{ LIC)
j
co To e
58608
N 8
£ 4 N4

Figure 30 Continued.

Revised 1988/11/8 CSM Testbed Matrix Processors

3.1-7

AUS

Utility Processors

60 10
1868

G0 1O
5868

5888 labe!

ORIGINAL PAGE IS
OF POOR QUALITY

3880)abe!

l

print error message
for bad function
command { ERMSG1L)

I

[call FINC'ILEG®)]

T

print “COMPLETED"
message

ves

KLASS = 8

?

N1

L call READER l

]

GO TO 1@e6e

7808 1abe!

GO TO
7988

Figure 30 Concluded.

3.1- 8

CSM Testbed Matrix Processors

Revised 1088/11/8

Utility Processors

AUS

ORIGINAL PAGE 1S
OF POGY GuALITY

NI

vES

initialize INTAB
set INIT=1

request for

*LIB or DEFINE
op ?

ves

computed GO TO
to procass INLIB
QUTLIB, DEFINE
or MACRO command

2o

labe) 18]
label 48
label 28 I
sat
NIN= INLIB sat name, level
sat labe! and value in IMACR

NU(3)=0UTLIB 38
J | call MACDEF I

?ind praviously-defined name
or next open slot in INTAB

found
slot for name
in INTAB

NTU

60 TO
888 [;n FIN('nAxN')J
RETURN
sa@t name and dataset
gpecification in INTAB

Figure 31 PRP2 logic flowchart.

Revised 1988/11/8 CSM Testbed Matrix Processors

3.1-9

AUS Utility Processors

ORIGINAL PAGE IS
OF POOR QUALITY

GQ To
888

found
argument {n name
table
?

o

assume argument
is name of datase-

ni,* -

/

set-up T0C entry,
set source library,
sot vector limits L1, L2

I

urm T0C (LTOC)1
|

transfer TOC LINE
to name-table TOC MTOC

calculats:
physical record size LR
number of records NR
first record IR
type indicator MTYP

888 labe!

l RETURN ’

Figure 31 Concluded.

3.1-10 CSM Testbed Matrix Processors Revised 1988/11/8

Utility Processors

AUS

get SPARse matrix
argument ‘s T0OC
parameters

l

CRIGINAL PAGE |S
OF POOR QUALITY

check type of arguments
and determina index of
operation required (1-5)

is one
argument a

ves SPARse matrix

construct vector
70C parameters

|

calculate core workspace
allocation based on
arguments' record lengths

is
workspace

-

| call FIN(‘CORE')J

RETURN

Figure 32

sufficient

set-up output

dataset (LIO)

|

reutine

S11
S21
§22
sS1v
S2v
sSvy

DD WN

computad GOTO to {nvoke
appropriate camputational

labal routine iyees

Ss,SS
0s,SS
0s,08
Ss,v
0s,v
v,V

I

update output
datasat 70C (LIO)

SSUM logic flowchart.

Revised 1988/11/8

CSM Testbed Matrix Processors

3.1-11

AUS Utility Processors

3.1.6 PROCESSOR DATA FLOW

Internal data flow in AUS is quite straightforward. Core workspace is always allocated
separately by each function, starting from the first word of KA, according to the specific
needs of the function. For system matrix operations, space is allocated for one block of
the system matrix and the operation proceeds in a block-by-block manner, regardless of
the matrix blocksize or the amount of unused workspace.

3.1.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

AUS main level routine resets, commands, etc.

ELDATA input element data

MACDEF define CLIP macrosymbol

PRP2 process INLIB, OUTLIB, DEFINE, or MACRO com-
mands or get dataset names

S11 low-level sum of two single-precision sparse matrices

S21 low-level sum of one single-precision and one double-
precision sparse matrices

S22 low-level sum of two double-precision sparse matrices

S1v low-level sum of one single-precision sparse matrix and
one single-precisioin diagonal matrix

S2v low-level sum of one double-precision sparse matrix and
one single-precision diagonal matrix

SvV low-level sum of two single-precision rectangular matri-
ces

SCNTOC implementation of FIND command

SSMK implementation of SSM, SSK commands

SSPREP implementation of SSPREP command

SPROD implementation of sparse matrix multiply function

SSUM implementation of SUM command

TITL implementation of ALPHA command

3.1- 12 CSM Testbed Matrix Processors Revised 1988/11/8

Utility Processors AUS

Variable Routine(s) Description

ERMSG1 AUS error message

1D AUS index of command in function list
IMACR PRP2 macro definition

IMK AUS 1 for SSM, 2 for SSK

INIT PRP2 flag to initialize symbol table
INTAB PRP2 symbol table

IR PRP2 1

ITAG AUS substructure identifier

ITYPE AUS type of data for TABLE command
KA all blank common workspace

KLASS AUS class of function (0, 1, or 2)

L1 PRP2 first vector to process

L2 PRP2 last vector to process

LR PRP2 record size

MTOC PRP2 current TOC line

MTYP PRP2 1 or 2 for sparse matrices, 3 for other matrices
NAR AUS number of function arguments

NIN PRP2 default input library

NR PRP2 number of records

NU PRP2 vector of libraries for arguments and output
ZERO AUS zero test parameter

3.1.8 USAGE GUIDELINES AND EXAMPLES

The functionality of AUS is quite broad in scope. Indeed, AUS capabilities are true to
the notion of “utility.” Individual subprocessors are quite powerful, especially in the hands
of an experienced user. Arithmetic operations are invoked through a uniform functional
command format. The merging of AUS and a higher-level procedural language like CLIP
provides a powerful facility for performing iterative simulation algorithms.

One confusing aspect of the AUS functional interface is the dependence of function
specifications on argument datatypes. The most egregious instance of such ambiguity is the
distinction between the PROD, RPROD and MXV functions; all perform matrix-vector
multiplications, but each for a different matrix data storage structure. On the other hand,
the SUM function handles data structure details transparently.

All functions provided by AUS operate on either one (e.g., SQRT, NORM) or two
(e.g., SUM, PROD) arguments. Evaluation of general algorithmic expressions involving
more than one arithmetic operation or function must be executed in succession. The user
must provide scratch workspace in the correct form. Thus, the DEFINE function may be
frequently invoked. No facility, aside from the data library Table of Contents, is provided
for saving data symbol definitions for later use. Table of Contents data are also used to
define parameters like length and number of vectors associated with a data symbol or name.
Without exception, vectors used in AUS must conform to the SYSVEC or blocked-matrix

Revised 1988/11/8 CSM Testbed Matrix Processors 3.1-13

AUS Utility Processors

(NI by NJ) format. Thus, the linear algebraic characteristics of the vector are intimately
tied to its external database representation.

AUS was envisioned to serve as a arithmetic utility for manipulating matrices and
vectors associated with a parent finite-element model since the JDF1.BTAB.1.8 dataset
is always required, regardless of the user’s (as yet unspecified) purpose in invoking AUS.
The generality of AUS is compromised by such a restriction, even though many functions
operate on or produce system matrix and vector datasets exclusively. Furthermore, system
matrix operations are restricted to a single, model-intrinsic topology.

Upon thorough, albeit arduous, examination of the true-to-code AUS subroutine
flowchart, one should be convinced that AUS, like virtually all SPAR logic subroutines, is
not coded in a structured manner. Furthermore, and again “as usual,” no extensions to
FORTRAN-IV are employed. These two factors combine to make AUS difficult to modify to
accommodate increased functionality and /or ease of use.

All logic in AUS is not archaic and unstructured, however. In particular, the notion
of a functional class, as denoted by the KLASS flag, is very useful for ranking the rela-
tive priority and scope of certain groups of functions. The KLASS=0 functions (ELDATA,
ALPHA, SYSVEC and TABLE) are used for direct data input to useful external data
structures. Numerical and automated data-generation tasks are handled by the specific
subprocessors. The KLASS=1 functions (ZERO, INLIB, OUTLIB, DEFINE and MACRO)
are used to set administrative constants and information. The MACRO function probably
belongs better under KLASS=0, however. One disturbing aspect is that all substructure
generation commands are lumped under the KLASS=1 category. The reason for this choice
is not obvious. The KLASS=2 category comprises the real workers. These are the true
arithmetic functions (with minor exceptions for specialized functions like RIGID).

If the class hierarchy in AUS had been rigorously formulated and followed, a highly
structured version might have evolved. The structure would have as its centerpiece the
separation of classes of functions through the use of class-specific cover subroutines. Such
a structure would have enabled a cleaner logic flow and straightforward addition of en-
hancements like a pan-functional local data manager to eliminate repetitive I/O in the
KLASS=2 routines.

3.1- 14 CSM Testbed Matrix Processors Revised 1988/11/8

Introduction References

4.0 References
4.0-1 Stewart, C. B., Compiler: The Computational Structural Mechanics Testbed Data
Library Description, NASA TM-100645, 1988.

4.0-2 Stewart, C. B., Compiler: The Computational Structural Mechanics Testbed User’s
Manual, NASA TM-100644, 1989.

Revised 1988/11/9 CSM Testhed Matrix Processors 4.0-1

References , Introduction

THIS PAGE LEFT BLANK INTENTIONALLY.

40-2 CSM Testbed Matrix Processors Revised 1988/11/9

1A

Report Documentation Page

1. Report No. 2. Government Accession No.

NASA CR-181742

3. Recipient's Catalog No.

4. Title and Subtitle
The CSM Testbed Matrix Processors Internal Logic and Dataflow
Descriptions

5. Report Date
December 1988

7. Author(s)
Marc E. Regelbrugge and Mary A. Wright

6. Performing Organization Code

8. Performing Organization Report No.

9. Performing Organization Name and Address
Lockheed Missiles and Space Company, Inc.
Research and Development Division
3251 Hanover Street
Palo Alto, California 94304

10. Work Unit No.
505-63-01-10

11. Contract or Grant No.
NAS1-18444

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes
Langley Technical Monitor: W. Jefferson Stroud

16. Abstract

algorithmic logic flow.

This report constitutes the final report for subtask 1 of Task 5 of NASA Contract NAS1-18444,
Computational Structural Mechanics (CSM) Research. This report contains a detailed description of
the “coded” workings of selected CSM Testbed matrix processors (i.e., TOPO, K, INV, SSOL) and of
the arithmetic utility processor AUS. These processors and the current sparse matrix data structures are
studied and documented. Items examined include: details of the data structures, interdependence of data
structures, data-blocking logic in the data structures, processor data flow and architecture, and processor

17. Key Words {Suggested by Authors(s))
Structural analysis software
Matrix utilities

18. Distribution Statement
Unclassified—Unlimited

Subject Category 39

19. Security Classif.(of this report)
Unclassified

20. Security Classif.(of this page)
Unclassified

21. No. of Pages | 22. Price
96 AQS

NASA FORM 1626¢ ocCT ss

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

